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სიმეტრიული ფრთის პროფილის კონტურის განსაზღვრის თეორიული 

მოდელი წინაღობის მინიმიზაციის მიზნით 

 

ბიძინა აბესაძე1, საბა კოპალიანი2, ლიზი უბილავა3 
1, 2, 3 საქართველოს საავიაციო   უნივერსიტეტი 

ქეთევან დედოფლის გამზირი №16, 0103 თბილისი, საქართველო 

 

რეზიუმე: ნაშრომში განხილულია ფრთის სიმეტრიული პროფილის კონტურის განსაზღვრის ახალი 

მეთოდიკა, რომელიც ეფუძნება უმცირესი ქმედების პრინციპსა და ვარიაციული კალკულუსის 

გამოყენებას. შემოთავაზებული მათემატიკური მოდელის მიზანია წინაღობის ძალის მინიმიზაცია და 

გეომეტრიულ-ფიზიკური სასაზღვრო პირობების დაკმაყოფილება. წარმოდგენილი თეორიული 

ანალიზი მნიშვნელოვანი ნაბიჯია საჰაერო აპარატების აეროდინამიკური ზედაპირების 

კონსტრუირების მიმართულებით, რადგან არსებობს რიგი პრობლემები, ჰაერის ნაკადის მცირე 

რეინოლდსის რიცხვებზე მოქმედებისას. აღნიშნული მოდელი იძლევა შესაძლებლობას შეფასდეს 

ფრთის პროფილის ფორმისა და დინამიკური პარამეტრების გავლენა საერთო აეროდინამიკურ 

წინააღმდეგობაზე. გარდა ამისა, ნაშრომში ნაჩვენებია, რომ სიმეტრიული პროფილის შემთხვევაში 

ნულოვანი შეტევის კუთხისას მინიმალური წინაღობის მიღწევა მხოლოდ თეორიული გზით 

შეუძლებელია, რაც მიუთითებს უფრო კომპლექსური, ასიმეტრიული პროფილების შემდგომი 

კვლევის აუცილებლობაზე. მიღებული შედეგები წარმოადგენს საფუძველს გაუმჯობესებული 

პროფილის ოპტიმიზაციისა და ფრთის ფორმის მოდიფიკაციის მეთოდების შემუშავებისთვის. 

 

საკვანძო სიტყვები: აეროდინამიკა, ფრთის პროფილი, წინაღობის მინიმიზაცია, ვარიაციული 

კალკულუსი, უმცირესი ქმედების პრინციპი, ლაგრანჟის განტოლება, ოპტიმიზაცია, ნაკადის 

სეპარაცია. 

შესავალი 

თანამედროვე ავიაციაში ფრთის პროფილის ფორმის ოპტიმიზაცია ერთ-ერთ უმთავრეს 

ამოცანად რჩება როგორც აეროდინამიკური, ისე ენერგოეფექტურობის თვალსაზრისით. ფრენის 

ეკონომიურობა, საწვავის მოხმარება და მანევრულობის შესაძლებლობები პირდაპირ 

დამოკიდებულია იმაზე, თუ რამდენადაა ფრთის გეომეტრია მორგებული ჰაერის ნაკადის 

მახასიათებლებსა და რეინოლდსის რიცხვის დიაპაზონზე. ამიტომაც, ფრთის კონტურის 

განსაზღვრის პრობლემა არა მხოლოდ თეორიული მნიშვნელობისაა, არამედ პრაქტიკულად 

მნიშვნელოვან როლს ასრულებს საჰაერო ხომალდების დიზაინისა და საინჟინრო პროექტირების 

პროცესში. 

აეროდინამიკური პროფილების ანალიზისა და ოპტიმიზაციის მიმართულებით მრავალი 

მეთოდი შემუშავდა, რომელთა შორის განსაკუთრებული ადგილი უჭირავს მათემატიკურ 
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მოდელირებასა და ვარიაციული ანალიზის საფუძველზე აგებულ მოდელებს. ამგვარი მიდგომა 

იძლევა შესაძლებლობას დინამიკური და გეომეტრიული ფაქტორების ურთიერთკავშირი 

განისაზღვროს ზუსტად, რაც საჭიროა ფრთის ზედაპირის ფორმის ისეთი არჩევისთვის, რომელიც 

უზრუნველყოფს მინიმალურ წინაღობასა და სტაბილურ ნაკადს სხვადასხვა ფრენის რეჟიმებში. 

 

ძირითადი ნაწილი 

ნაშრომის პრობლემატიკა გულისხმობს ფრთის პროფილის იმგვარი კონტურის  პოვნას, 

რომელიც, გარდა აუცილებელი მოთხოვნებისა, დააკმაყოფილებს უმცირესი წინააღმდეგობის ძალის 

შექმნის პირობას.  

 

სურ. 1. ფრთის პროფილზე მოქმედი ძალები 

სურ. 1-ის მიხედვით: 𝑑𝐹 არის რეაქციის ძალა, 𝑝 - სტატიკური წნევა, 𝑑𝑠 - კონტურის 

ელემენტარული ნაწილი, 𝑑𝐹𝑥 - შუბლა წინაღობის ძალა, 𝑣𝑖 - მხები სიჩქარე, 𝑣∞ - თავისუფალი ნაკადის 

სიჩქარე, 𝜃 - კუთხე მხებ სიჩქარეს და თავისუფალი ნაკადის სიჩქარეს შორის, 𝐿 - ფრთის პროფილის 

სიგრძე, ℎ - მაქსიმალური სიმაღლე. 

ფრთის პროფილზე მოქმედი წინაღობის ძალა შეიძლება წარმოდგეს სამი შესაკრების სახით: 

𝐹⃗ = 𝐹⃗სტატიკური + 𝐹⃗დინამიკური + 𝐹⃗ხახუნი              (1) 

სადაც სტატიკური დატვირთვა გამოწვეულია სტატიკური წნევით, ის მოქმედებს კონტურის 

მართობულად. შემდგომში აღებულია მისი ჰორიზონტალური მდგენელი. 

𝑑𝐹სტატიკური = 𝑝𝑑𝑠 𝑐𝑜𝑠(90° − 𝜃) = 𝑝𝑑𝑠 sin 𝜃 = 𝑝𝑏𝑑𝑙 sin 𝜃                      (2) 
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სადაც 𝑑𝑠 = 𝑏𝑑𝑙 ფრთის ზედაპირის ფართის ელემენტია, 𝑑𝑙 = √1 + (𝑦′)2𝑑𝑥 - კონტურის 

ელემენტის სიგრძე, ხოლო 𝑏 - ფრთის სიგრძე. 
მოცემულ შემთხვევაში ბერნულის განტოლება გამარტივდება რადგან, ფრთის პროფილის 

სიგანის სიმცირის გამო, შეიძლება იგულისხმებოდეს, რომ ℎ1 = ℎ2, შედეგად მივიღებთ [1, 2, 3]: 

𝑃 +
1

2
𝜌𝑣𝑖

2 = 𝑃∞ +
1

2
𝜌𝑣∞

2 ⇒ 𝑃 = 𝑃∞ +
1

2
𝜌𝑣∞

2 −
1

2
𝜌𝑣𝑖

2           (3) 

ნაკადის უწყვეტობის პირობიდან გვექნება: 

𝑑𝑙

𝑣𝑖
=

𝑑𝑙 cos 𝜃

𝑣∞
⇒ 𝑣𝑖 =

𝑣∞

cos 𝜃
                                                           (4) 

ფუნქციის წარმოებულის გეომეტრიული შინაარსიდან გამომდინარე: 

Tan 𝜃 =
𝑑𝑦

𝑑𝑥
= 𝑦′                                                                 (5) 

ხოლო 

cos 𝜃 =
1

√1+(tan 𝜃)2
=

1

√1+(𝑦′)2
  და sin 𝜃 =

tan 𝜃

√1+(tan 𝜃)2
=

𝑦′

√1+(𝑦′)2
                            (6) 

(4), (5} და (6)-ის გათვალისწინებით (3) გამოსახულება მიიღებს სახეს: 

𝑃 = 𝑃∞ +
1

2
𝜌𝑣∞

2 (𝑦′)2                                                            (7) 

ამავდროულად, სტატიკური დატვირთვით გამოწვეული წინაღობის ძალის ელემენტი (2)-ის 

მიხედვით 

𝑑𝐹სტატიკური = 𝑏 (𝑃∞ +
1

2
𝜌𝑣∞

2 (𝑦′)2)
𝑦′∙√1+(𝑦′)2

√1+(𝑦′)2
𝑑𝑥 = 𝑏(𝑃∞ +

1

2
𝜌𝑣∞

2 (𝑦′)2)𝑦′𝑑𝑥        (8) 

ხოლო სტატიკური კომპონენტით გამოწვეული სრული წინაღობის ძალა 

𝐹სტატიკური = ∫ 𝑏(𝑃∞ +
1

2
𝜌𝑣∞

2 (𝑦′)2)𝑦′𝑑𝑥
𝐿

0
                                     (9) 

მოძრავი ჰაერის ნაკადის დინამიკური დაწნეხვის შედეგად წარმოქმნილი წნევის ძალა ქმნის 

დამატებით წინაღობას. ამ ძალის წარმოქმნის მექანიზმი შეიძლება აღიწეროს შემდეგნაირად: ჰაერის 

ნაკადი განიცდის ფრთის ზედაპირიდან არეკვლას (იხ. სურ. 2), შედეგად იცვლება ჰაერის იმპულსის 

მიმართულება, რაც გამოიხატება რეაქციის ძალის წარმოქმნაში. რაოდენობრივი შეფასებისთვის უნდა 

დაიწეროს აღნიშნული იმპულსის ცვლილება ჰორიზონტალური 𝑥 ღერძის მიმართ [4, 5, 11]. 
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სურ. 2. ფრთის პროფილზე მოქმედი დინამიკური ძალა 

ჰაერის ნაკადის სიჩქარის მდგენელი ზედაპირიდან არეკვლის შემდეგ იქნება 𝑣𝑥 = 𝑣∞𝑐𝑜𝑠 (2𝜃), 

ხოლო სიჩქარის ცვლილება ∆𝑣𝑥 = 𝑣∞ − 𝑣𝑥 = 𝑣∞(1 − 𝑐𝑜 𝑠(2𝜃)) = 𝑣∞ ∙ 2(sin𝜃)2 =
2𝑣∞(𝑦′)2

1+(𝑦′)2 . რაც შეეხება 

ჰაერის ნაკადის მასას, ის შეიძლება შეფასდეს შემდეგნაირად: განვიხილოთ ფრთის კონტურის 

განსახილველ წერტილის მახლობლად მართკუთხა განივკვეთის მქონე ვიწრო ზოლი, რომლის 

ფართობი იქნება ∆𝑆 = 𝑏 ∙ ∆𝑦 = 𝑏 ∙
∆𝑦

∆𝑥
∙ ∆𝑥, მაშინ ზღვარზე გადასვლისას 𝑑𝑆 = 𝑏 ∙ 𝑦′ ∙ 𝑑𝑥. ამ ზოლში 

გამავალი ჰაერის ნაკადის მასა იქნება ∆𝑚 = 𝜌∆𝑉 = 𝜌 ∙ ∆𝑆 ∙ 𝑣∞ ∙ ∆𝑡, ხოლო იმპულსის ცვლილება ∆𝑝 =

∆𝑚 ∙ ∆𝑣𝑥. ამ ყოველივეს გათვალისწინებით კონტურის მოცემულ წერტილზე მოქმედი 

ელემენტარული რეაქციის ძალის ჰორიზონტალური მდგენელი, რომელიც სიდიდით წინაღობის 

ძალის ტოლია, იქნება: 

𝑑𝐹დინამიკური = lim
∆𝑡→0

∆𝑝

∆𝑡
=

2∙𝜌∙𝑣∞
2∙𝑏∙(𝑦′)3

1+(𝑦′)2 𝑑𝑥     (10) 

მაშინ, სრული წინაღობის ძალის დინამიკური კომპონენტია: 
  

𝐹დინამიკური = ∫
2∙𝜌∙𝑣∞

2∙𝑏∙(𝑦′)3

1+(𝑦′)2 𝑑𝑥
𝑥0

0
= ∫

2∙𝜌∙𝑣∞
2∙𝑏∙(𝑦′)3

1+(𝑦′)2 𝜃(𝑥0 − 𝑥)𝑑𝑥
𝐿

0
    (11) 

სადაც 𝜃(𝑥0 − 𝑥) ჰევისაიდის ფუნქციაა. 
(1) გამოსახულების მესამე შესაკრები გამოწვეულია ჰაერის ნაკადის ფრთის ზედაპირთან 

ხახუნის შედეგად წარმოქმნილი ძალის (მოქმედებს ზედაპირის მხები მიმართულებით) 

ჰორიზონტალურ ღერძთან მდგენელების აჯამვით [6, 8, 10, 13]. ჰაერის ნაკადის დაბალ სიჩქარეზე 

ლამინარული დინების შემთხვევაში შესაძლოა სასაზღვრო ფენების მიხედვით ხახუნი 

გათვალისწინებული იქნას, უფრო გამარტივებული სახით, რაც გულისხმობს, რომ მისი სიდიდე  

სიჩქარის პროპორციულია. ხახუნის ძალის ელემენტარული მნიშვნელობა 𝑑𝜏 = 𝜇𝑣𝑑𝑆, სადაც 𝑣 =

𝑣∞√1 + (𝑦′)2, 𝑑𝑆 = 𝑏𝑑𝑙 = 𝑏√1 + (𝑦′)2𝑑𝑥, ხოლო 𝜇 ხახუნის კოეფიციენტია. ამ ძალის 

ჰორიზონტალური მდგენელი 𝑑𝐹ხახუნი = 𝑑𝜏 ∙ cos(𝜃) =
𝑑𝜏

√1+(𝑦′)2
,  სრული ძალისთვის იქნება: 
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𝐹ხახუნი = ∫ 𝜇
𝐿

0
𝑣∞𝑏√1 + (𝑦′)2𝑑𝑥                                                       (12) 

აღსანიშნავია, რომ ხახუნის კოეფიციენტის განსაზღვრა მოითხოვს, მაღალი სიზუსტით 

ნატურალური ექსპერიმენტების ჩატარებას, რაც წარმოდგენილი კვლევის ფარგლებში ვერ მოხერხდა. 

ამიტომ გამარტივების მიზნით ნაგულისხმევია იდეალურად გლუვი ზედაპირის შემთხვევა, რომლის 

დროსაც ხახუნის კოეფიციენტი 𝜇 = 0. შემდგომი გამოთვლები წარმოებს 1 ფორმულის მესამე 

შესაკრების გარეშე, რაც საბოლოოდ მიიღებს სახეს: 

𝐹𝑥 = ∫ [𝑏 (𝑃∞ +
1

2
𝜌𝑣∞

2 (𝑦′)2) 𝑦′ +
2∙𝜌∙𝑣∞

2∙𝑏∙(𝑦′)3

1+(𝑦′)2 𝜃(𝑥0 − 𝑥)] 𝑑𝑥
𝐿

0
                       (12) 

ზემოთ მოყვანილი მაგალითის ამოხსნის ანალოგიურად, 𝐹𝑥-ის სიდიდე ქმედების 

ანალოგიურია და განსახილველი ამოცანაც სწორედ მის მინიმიზაციას ეხება. ანუ უნდა შეირჩეს 

ისეთი 𝑦(𝑥) კონტური, რომელიც (12) გამოსახულებას მიანიჭებს მინიმალურ მნიშვნელობას. ამოხსნის 

მეთოდიკა გულისხმობს, რომ წინაღობის ძალის გამომსახველი სიდიდის ვარიაცია იყოს 0-ის ტოლი: 

𝛿𝐹𝑥 = 0                                                                             (13) 

სადაც ლაგრანჟიანის როლში (12)-ის ინტეგრალქვეშა გამოსახულებაა: 

ℒ(𝑥; 𝑦; 𝑦′) = 𝑏 (𝑃∞ +
1

2
𝜌𝑣∞

2 (𝑦′)2) 𝑦′ +
2∙𝜌∙𝑣∞

2∙𝑏∙(𝑦′)3

1+(𝑦′)2 𝜃(𝑥0 − 𝑥)     (14) 

აღსანიშნავია, რომ (14) გამოსახულება ცხადი სახით არ შეიცავს 𝑦(𝑥) ფუნქციას, რის გამოც 

ლაგრანჟის განტოლება (3) მიიღებს გამარტივებულ სახეს [6]: 

𝑑

𝑑𝑥
(

𝜕ℒ

𝜕𝑦′) = 0                                                                          (15) 

რომელიც უნდა ამოიხსნას შემდეგი სასაზღვრო პირობების მიხედვით: 

𝑦(0) და 𝑦(𝐿) = 0                     (16) 

მიღებული გამოსახულებების სირთულის გამო აქ მოყვანილია მხოლოდ შედეგები. 

აღსანიშნავია, რომ გამოთვლები განხორციელდა კომპიუტერული პროგრამა „Maple“-ის გამოყენებით. 

(15)-ის ზოგადი ამონახსნი, მიუხედავად განუსაზღვრელ კოეფიციენტზე დამოკიდებული 

გამოსახულების სირთულისა, საბოლოო ჯამში დაიყვანება წრფის ფუნქციაზე 

 𝑦(𝑥) =  𝐴𝑥 + 𝐵                                                                       (17) 

ხოლო (16) სასაზღვრო პირობების გამოყენებით მიიღება მარტივი ტრივიალური ფორმა: 

                                                 𝑦(𝑥) = 0                    (18) 
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რაც ნიშნავს, რომ ფრთის პროფილის ფორმა უნდა იყოს ჰორიზონტალური წრფის მონაკვეთი. 

ეს შედეგი გარკვეულწილად მოსალოდნელი იყო, რადგან მათემატიკური თვალსაზრისით მხოლოდ 

სწორი ხაზის  (ან ბრტყელი ფურცელი) ფორმის პროფილს ექნება მინიმალური წინაღობა. 

პრაქტიკული თვალსაზრისით ეს შედეგი გამოუსადეგარია. ჩნდება გარკვეული ხელოვნური 

ჩარევის საჭიროება, რაც ფრთის პროფილის კონტურის მახასიათებელ სპეციფიკას თავიდანვე 

გაითვალისწინებს. ეს გამოწვეულია იმით, რომ (15) სახით მოცემული გამოსახულება არის მეორე 

რიგის დიფერენციალური განტოლება, რომლის ამოხსნის შედეგად ჩნდება ორი განუსაზღვრელი 

კოეფიციენტი. ისინი მხოლოდ საკმარისია (17) წრფის პარამეტრების განსაზღვრისთვის, 

თანამედროვე საფრენ აპარატებში გამოყენებული კონტურის ფორმა კი გაცილებით რთულია და 

შეიცავს გარკვეულ დათქმებს, რომლებიც აუცილებლად უნდა იყოს გათვალისწინებული, კერძოდ: 

ბგერამდელი სიჩქარეებისთვის გამოყენებულ პროფილებს აქვთ მომრგვალებული თავი (წვეთის 

ფორმა), წვეროდან რაიმე 𝑥0 მანძილზე შესაბამისი სიგანის მაქსიმუმი და დაცულია წირის გლუვობა. 

ეს მათემატიკურად გამოისახება შემდეგნაირად: 

𝑦′(0) = ∞, 𝑦(𝑥0) = ℎ და 𝑦′(𝑥0) = 0                       (19) 

ცხადია ამ დამატებითი პირობების გათვალისწინება მხოლოდ ორი დამოუკიდებელი 

კოეფიციენტის ფორმით ვერ მოხდება, ამიტომ კვლევის ფარგლებში შემუშავდა ახალი მიდგომა, რაც 

წარმოდგენილ მოთხოვნებს დააკმაყოფილებს. 

(19) დამოკიდებულებებით განსაზღვრული და ასევე სასაზღვრო პირობების ავტომატურად 

შესრულება, იძლევა მნიშვნელოვან შესაძლებლობას მოხდეს ფრთის პროფილის განმსაზღვრელი 

ფუნქციის მოდერნიზება ისე, რომ მამრავლის სახით გაჩნდეს უცნობი ფუნქცია, რომლის ფორმა 

განისაზღვროს (15) ლაგრანჟის განტოლებიდან გამომდინარე, რაც საბოლოო ჯამში პროფილის 

კონტურის დახვეწას გამოიწვევს. წინაღობის ძალის მინიმუმის პირობიდან გამომდინარე, კერძოდ ეს 

ფორმა შეიძლება წარმოდგეს შემდეგი სახით: 

𝑦(𝑥) = 𝑥 ∙ 𝑙𝑛(𝑥) ∙ 𝜑(𝑥)                          (20) 

მიუხედავად ამდაგვარი მცდელობისა, ლაგრანჟის განტოლების ამონახსნი მაინც დაიყვანება 

წრფივი ფუნქციის (17) სახეზე, ანუ მეთოდს რაიმე სახის გაუმჯობესება არ მოუცია.  

აღნიშნული შედეგი გამოწვეულია იმით, რომ საწყის ამოცანად აღებულია სიმეტრიული ფრთის 

პროფილის კონტურის განსაზღვრა წინაღობის ძალის მინიმიზაციის გზით. მიუხედავად ხელოვნური 

ჩარევისა, საბოლოო შედეგი მაინც ტრივიალური ფორმისაა, რაც ლოგიკურად მოსალოდნელი იყო. 

უფრო საინტერესო სურათის მიღების მოლოდინი ჩნდება ასიმეტრიული პროფილების განხილვისას, 

როცა მინიმალურ წინაღობის ძალის მოთხოვნასთან ერთად ჩნდება მაქსიმალური ამწევი ძალის 

მიღების საჭიროება, რაც საერთო სურათს ართულებს. ასეთ შემთხვევაში ფრთის კონტური 

არატრივიალური ფორმის გამოჩნდება. აღნიშნული საკითხი შემდგომი კვლევის საგანია. 
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დასკვნა 

წარმოდგენილი კვლევის შედეგად დადგინდა, რომ სიმეტრიული ფრთის პროფილის 

კონტურის განსაზღვრა მხოლოდ ვარიაციული მეთოდითა და ლაგრანჟის განტოლების ამოხსნით ვერ 

იძლევა პრაქტიკულად გამოსადეგ ფორმას, რადგან მიღებული შედეგი ტრივიალურია და ემთხვევა 

ჰორიზონტალურ წრფეს. ეს ნიშნავს, რომ რეალური აეროდინამიკური პირობების გათვალისწინებით, 

მხოლოდ თეორიული მინიმიზაციის საფუძველზე მიღებული კონტური ვერ უზრუნველყოფს 

ეფექტურ ნაკადს და მინიმალურ წინაღობას. აღნიშნული ფაქტი ადასტურებს, რომ სიმეტრიული 

პროფილის შემთხვევაში ნულოვანი შეტევის კუთხეზე საჭირო ხდება დამატებითი გეომეტრიული ან 

ფიზიკური შეზღუდვების შემოღება, რომლებიც გაითვალისწინებენ ფრთის კონტურის ბუნებრივ 

ფორმას, ნაკადის გამრუდებას და სეპარაციის თავიდან აცილების პირობებს. 

ამავე დროს, ნაშრომში წარმოდგენილი მიდგომა ქმნის მყარ თეორიულ საფუძველს შემდგომი 

კვლევებისთვის. განსაკუთრებით საინტერესოა მეთოდის გამოყენება ასიმეტრიული 

პროფილებისთვის, სადაც შეტევის კუთხის არანულოვან მნიშვნელობებზე მოსალოდნელია 

არატრივიალური შედეგები და ეფექტური ფორმის მიღება. მიღებული დასკვნები შეიძლება 

გამოყენებულ იქნას როგორც საწყისი მოდელი ფრთის კონსტრუქციული ოპტიმიზაციის, სასრულ 

ელემენტთა მეთოდით სიმულაციებისა და ექსპერიმენტული ტესტირების ერთობლივი სისტემის 

შესაქმნელად, რაც საბოლოო ჯამში ხელს შეუწყობს ენერგოეფექტურ და დაბალწინაღობის მქონე 

საჰაერო აპარატების განვითარებას. 
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Theoretical Model for Determining the Contour of a Symmetrical Wing Profile 

for Drag Minimization 

Bidzina Abesadze1, Saba Kopaliani2, Lizi Ubilava3 
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16 Ketevan Dedopali Avenue, 0103 Tbilisi, Georgia 

Abstract: This paper presents a new methodology for determining the contour of a symmetrical wing profile 
based on the principle of least action and the application of variational calculus. The proposed mathematical 
model aims to minimize aerodynamic drag while satisfying geometric and physical boundary conditions. The 
theoretical analysis represents a significant step toward the design and optimization of aerodynamic surfaces 
in aircraft structures, as various issues arise when operating at low Reynolds numbers. The developed model 
enables the evaluation of the relationship between the wing profile geometry, flow characteristics, and the 
resulting aerodynamic resistance. Furthermore, it is demonstrated that for a symmetrical profile at zero angle 
of attack, achieving minimum drag purely by theoretical means is impossible, indicating the necessity of 
further investigation into more complex, asymmetrical airfoils. The obtained results provide a foundation for 
the development of improved optimization and modification methods for wing contour design. 

Keywords: aerodynamics, wing profile, drag minimization, variational calculus, principle of least action, 
Lagrange equation, optimization, flow separation. 


